
Power Markdown for Jira
Documentation

Overview 5
Getting Started 6
Navigation 7

Main Menu 7
Admin Menu 8

User roles 8
Variables API 8

Markdown Template Administration 9
Overview 9
User Access 9
Managing Templates 9
Creating and Editing Templates 10

Detail 12
Template Usage 12
User Input 13

Pages 13
Fields 14
Field Default Values 15
Field Types 15

Template Issue Fields 16
Template Editor 17

Using the Template Editor 17
Block Types 19
Markdown Syntax 20
Extended Markdown Syntax 22
Expression Autocomplete 23
Expression Context 23
Execution Steps 24

Snapshots 26
Template Debug 27
Expressions 28

Expression Context 28
System Properties 28
Common Expression Tasks 29
Operators 31
Note about in 32
Ternary operator 33
Native Types 33
Groups 33
Identifiers 33
Arrays 34
Functions 35

String Functions 35
Array Functions 38
Object Functions 39
Date Functions 39
Global Functions 39
Date Format Specifiers 39

Expression Limitations 41
Template Limitations 41

User Input Limitations 41
Template Issue Field Administration 42

Managing Template Issue Fields 42
Creating and Updating Template Issue Fields 42
Template Issue Field Limitations 44

Variables Administration 45
Overview 45
Managing Variables 45
Variable Data Types 45
Creating and Editing Variables 46
Managing Variables via the API 47

Authentication 47
Status Codes 47
Error Responses 47
Create Variable 48
Update Variable 49
Delete Variable 49
Get Variable 50
Get All Variables 50

Variable Limitations 50
Using Markdown Templates 52

Applying to an Issue 52
Dynamic Issue Markdown 60

Deleting Dynamic Markdown 64
Setting Default Dynamic Markdown 64

Overriding Dynamic Markdown Target Settings 65
Dynamic Markdown Limitations 65

Administration 66
User Roles 66

Assigning a Default Role 66
Assigning Roles to a User 66
Changing a Users Roles 67
Deleting User Roles 67
Creating a Custom Role 68
Updating a Custom Role 68
Custom Role Limitations 68

Variables API 68
API Settings 69
Regenerating the API Key 69

Overview
Power Markdown for Jira enables the creation of reusable, data driven markdown templates
that can be used to generate static or on demand content for Jira issues.

Templates can be used to generate:
● Content for issue fields such as the issue description or other custom fields which

use the wiki renderer.
● Content for new issue comments.
● On demand content displayed in custom panels on the issue screen.

Power Markdown for Jira has the following key features:
● Generate data driven content for issues from previously created markdown

templates.
● Drag and drop builder enables the construction of markdown templates using a

combination of static markdown text, dynamic data (variables, issue fields and user
based input), loops (to iterate over dynamic data) and conditions (if, else if, else) to
conditionally generate markdown).

● Expressions enable:
○ Merging data into static markdown and creating markdown syntax from data.
○ Building conditional content (using if, else if, else and loop blocks).
○ Conditionally displaying templates for users to select (based on issue data).
○ Conditionally request input from users to use within the markdown.

● Expression context data (data to use via expressions) is available from various
sources:

○ Variables (managed in the user interface or via an API).
○ Issue data (both Jira system fields and custom fields).
○ User input data (form data collected from users).
○ Properties set using the ‘Set property’ template block (set during template

execution).
● Enabling control over which users can manage templates and variables and which

users can see templates using roles.
● Template snapshots – the last 10 template saves are stored and can be reloaded and

reinstated.

Getting Started
Thank you for using Power Markdown for Jira!

To get you up and running as quickly as possible, we have provided this quick start page.

Power Markdown for Jira enables users to create content for issues based on dynamically
generated markdown.

Read an overview of the application and available features.

Content is generated from templates the user or an administrative user creates. Learn how
to create templates.

Templates can be as straightforward as a single block of markdown text or can use many
advanced features:

● Collect user input to use in your template.
● Configure issue fields to use in your templates.
● Create variables to use in your templates.
● Manage variables using an API.
● Learn about expressions and how to use them to transform and inject data into your

templates.

Once a template has been created, it can be used to generate content:
● Use a template to create a comment or update an issue field.
● Use a template to generate and display content on demand.

Navigation

Main Menu
The Power Markdown main menu can be accessed by clicking ‘Apps’ and then ‘Power
Markdown’

The menu will change based on a user’s role. For example a template administrator will see
links to manage and create templates whereas a regular user will only see a link to apply a
template.

Each menu item is described below:

Apply template
The apply template link will open a modal window, allowing the user to apply a template to
an issue in order to generate content for a specific field (such as the issue description) or to
create a new comment for the issue (see Applying to an Issue).

Create template
Directs the template administrator to the template screen to create a new template (see
Creating and Editing Templates).

Manage templates
Directs the template administrator to the manage templates screen which displays a list of
all templates and enables the user to create or manage templates (edit, delete, copy etc.).
(see Managing Templates)

Template issue fields
Directs the template administrator to a screen where they can manage template issue fields
(these are issue fields which can be used within expressions related to templates). (see
Template Issue Field Administration)

Manage variables
Directs the variable administrator to the manage variables screen which displays a list of all
variables and enables the user to create or manage variables (edit, delete, copy etc.). (see
Variables Administration)

Admin Menu
The admin menu can be accessed by clicking ‘Apps’, ‘Manage your apps’ and then clicking
‘Power Markdown’ under the apps section in the left hand menu.

User roles
Directs the user to the user roles screen, which enables users to manage roles, assigning
roles to users and setting a default role for all users. See User Roles.

Variables API
Directs the user to the variables API screen, which enables users to retrieve the variables API
key (for access to manage variables via an API). See Variables API.

Markdown Template Administration

Overview
Markdown templates enable users to create reusable, data driven content for issues.
Templates can be used to generate:

● Content for issue fields such as the issue description or other custom fields which
use the wiki renderer.

● Content for new issue comments.
● On demand content displayed in panels on the issue screen.

User Access
Users with the template administrator role can manage templates. Jira administrators can
set up custom roles or use the built in system roles to assign to individual users to control
access.
Administrators can also set a default role for all users.
See User Roles.

Managing Templates
To manage templates, click on the ‘Manage Templates’ link on the Power Markdown main
menu.

1. Create template – click to navigate to the template screen to create a template.
2. Back to menu – click to go back to the main menu.
3. Filter field selection – choose the field you wish to filter on.
4. Filter field value – enter a value to automatically filter the grid based on the selected

filter field.

5. Sort grid – click on the name, description or created on column headers to sort the
rows.

6. Edit template – click on the template name to navigate to the template edit screen.
7. Copy template – prompts for a template name and copies the chosen template.
8. Delete template – confirms you wish to delete the template and after confirmation

deletes the chosen template.
9. Page templates – click on the page number to navigate to the chosen page.

Creating and Editing Templates
Navigate to the template screen by either 1. clicking the ‘Create Template’ button on the
Power Markdown main menu or 2. by clicking on the ‘Manage Templates’ link on the Power
Markdown main menu and then the ‘Create template button’ above the templates grid (to
create) or on an existing template’s name (to edit).
Creating and editing a template follows an identical process and are explained in brief below
(the rest of this section explains each of the steps in more detail).
Enter a name (1) (required) and description (2) (optional) for the template.
Select the roles (3) the template is visible to (required).
Choose any variables (4) you wish to use in the template and once complete click ‘Rebuild
variable collection’ (5) to fetch the variables and add them to the expression context.
Note: You can amend the variables you wish to use in the template at any time by adding or
removing and clicking ‘Rebuild variable collection’.

Specify how the template can be used in Jira (optional, see Template Usage). This controls
which issues the template can be used on – the display condition (1), whether it can be used
to set fields, create comments or both (2) and whether the end user can edit the generated
content before applying (3).

Setup any user input (optional, see User Input).

Add any template issue fields (optional, see Template Issue Fields).

Build the template (see Template Editor).

Click ‘Save’ or ‘Save and close’.

Detail
The detail tab enables the user to provide descriptive information about the template (a
name (1) and description (2), to select which user roles the template is visible to (3) and to
select which variables are available to use in the template expressions (4).

Note: After adding or removing variables it is required to click on the ‘Rebuild variable
collection’ button.

Template Usage
The template usage tab provides options related to using the template.

Display condition (1)
The display condition is an expression which when set will filter the available templates
based on the expression result (false, an empty string, 0, undefined or null equate to a false
value and all other values equate to true).
Note: The expression context for the display condition is built from issue data only and
variables are not available to use.
This enables the template administrator to restrict access to the template based on any of
the created template issue fields. Such as only displaying the template for selection if the
selected issue has a specific priority.
See Expressions.

Apply Template Target (2)
The apply template target enables the template administrator to control whether the
template can be used to update an issue field, create a new comment or both.

Apply Template Preview (3)
The apply template preview, controls whether the generated content can be edited by the
user prior to being used to update a field or create a comment or whether it is displayed as a
read-only preview.

User Input
The user input tab enables the template administrator to define one or more pages of user
input (enabling capture of data from the template end user), which is added to the
expression context to be used in the templates.

Pages
Note: Each page can optionally use a display condition to determine whether it should be
visible to the user (the expression context includes the current target, issue data (configured
template issue fields), selected variables as well as any user input data from previous
pages).
To create/edit a user input page follow the steps below:

1. Click on the ‘Create page’ button.
2. Enter a description (required)
3. Enter a page title (required).
4. Enter a display condition if required (optional).
5. Click ‘Create’ (if creating) or ‘Update’ (if editing).

Pages can be re-ordered by clicking and dragging on the drag handle below the page title (1).
Pages can be deleted by clicking on the bin icon under the page title (3).
To add fields to the page, click on the ‘Create field’ icon next to the drag handle (2).

Fields
Fields enable the capture of specific user data.
The process for creating and editing fields is identical.

1. Click on the ‘Create field’ icon on the page you wish to add a field for.
2. Select the field type (see field types below for more information) (required).
3. Enter a description (required).
4. Enter a label (required) – this is displayed above the field.
5. Enter the context property name. This is the name that is used to access the data in

the expression context.
6. Enter the help text (displayed under the field) (optional).
7. Determine whether the field is optional.
8. Enter a default value for the field based on the type (see field types below).
9. Configure any other required or optional settings based on the field type (see field

types below).
10. Click ‘Create’ or ‘Update’.

Field Default Values
Each field requires a default value. This value is not displayed as a default to the user, but is
used as the default in the template editor expression context and also in the template
expression context when the user does not enter a value (either because the field is optional
or when the page is not displayed due to a display condition.
Note: Default values are not subject to validation settings detailed below.

Field Types
There are seven types of data which can be collected from users. These fields have type
specific settings which are detailed below:
Text

Settings Description

Is Multiline Switches between a single line input to a multi line input.

Regular expression Validates the input to ensure it matches the expression entered.

Number

Settings Description

Min value The minimum numeric value which is accepted.

Max value The maximum numeric value which is accepted.

Boolean
No additional settings available.
Date Time

Settings Description

Min value The minimum date time value which is accepted.

Max value The maximum date time value which is accepted.

Date

Settings Description

Min value The minimum date value which is accepted.

Max value The maximum date value which is accepted.

Single Select and Multiple Select
Both single and multiple select are similar so are detailed together, with the difference that
multiple select allows for multiple entries for a default.

Settings Description

Select
options

The select options can be entered manually (one per line) or generated at
runtime using an expression which must evaluate to an array of strings (note
the array mapProperty and object getPropertyNames functions can help to
retrieve object property names if required. See Expressions).

Template Issue Fields
Template Issue fields enable the template administrator to define issue data they wish to use
in the templates (via the expression context).
Template issue fields are not linked to any specific templates and can be created via the
Power Markdown main menu, but are included in the template editor for convenience.
For more information see Template Issue Field Administration.

Template Editor
The template editor enables construction of the markdown template using a drag and drop
interface.
It is an adjustable split view, with the left hand – the canvas (1) allowing for the construction
of the template using template blocks (2) (draggable blocks used to construct the
markdown template document) and the right hand side showing a preview (3) of the
generated content.
The ‘Expression context’ tab (4) (see Template Editor – Expression Context) enables viewing
and temporary modifications to the expression context.
The ‘Execution steps’ tab (5) (see Template Editor – Expression Steps) provides a
breakdown of the steps taken to generate the markdown based on the blocks added to the
canvas.

Using the Template Editor
Adding a Block
A block can be added to the template by dragging it from the block toolbar onto the editor
canvas at the desired position.

‘Else If’ and ‘Else’ blocks have specific positions they can be added.

‘Else If’ blocks can only be added between a condition starting and the corresponding ‘end’
(if no ‘Else’ exists), or before the ‘Else’ if one exists.
‘Else’ can only be added between ‘If’ and the corresponding ‘end’ (if no ‘Else If’ exists), or
after the last ‘Else If’ and before the corresponding ‘end’. An ‘Else’ cannot be added if an
‘Else’ already exists for the condition.
Minimising/Maximising Markdown blocks
Markdown blocks longer than 10 lines can be minimised and maximised by clicking on the
up/down arrow icons in the block menu.
Note: Minimising a large Markdown block helps when reordering blocks or when you have a
large template and want to hide certain parts of it.

When minimised, the block has a darker bottom border:

Deleting a Block
A block can be deleted by clicking on the trash can icon to the right of the block when
hovering over it.

Duplicating a Block
A block can be duplicated by clicking on the duplicate icon to the right of the block when
hovering over it.

Duplicating an ‘If’ and ‘Else if’ block will duplicate the block and all corresponding child
blocks.
An ‘Else’ block cannot be duplicated.
Moving a Block
A block can be moved by clicking on the drag icon to the right of the block and dragging it
into the desired position.

‘Else if’ and ‘Else’ blocks can only be dragged into valid positions based on the rules defined
above.

Block Types

There are eight block types, each of which are described below:

Block Description

Markdown Multi line text area allowing for the input of markdown syntax and
extended markdown syntax (see Markdown Syntax and Extended
Markdown Syntax).
As well as markdown, the input also supports expression blocks (see
Expressions).
Expression blocks start and end with the dollar character ‘$’.
Note: dollar characters can be escaped by preceding them with a
backslash: ‘\$’.
Example markdown and expression block:
The issue summary is: **$issue.summary$.**
Would print the text ‘The issue summary is:’ and then inject the summary
template issue field context property into the markdown in bold (see
Template Issue Field Administration).

New line Creates a newline

If Condition evaluates an expression and executes the child blocks
contained within it if it evaluates to a truthy value (false, an empty string,
0, undefined or null equate to a false value and all other values equate to
true).

Else If Condition evaluates an expression and executes the child blocks
contained within it if it evaluates to a truthy value (false, an empty string,
0, undefined or null equate to a false value and all other values equate to
true).

Else Condition executes the blocks contained within it if all previous paths
have been evaluated to false.

Loop Executes a loop from a numeric expression to another numeric
expression.
Within a loop the ‘loopIndices’ numeric array system property is used to
access the current index.
Example:
‘Loop from’ value: 0
‘Loop to’ value: 9
The Loop block will iterate 10 times from 0 through 9.
Within the Loop block the loopIndices context property will contain the
loop index at the current nesting level. If there is just one loop then the
index will be accessed like so: loopIndices[0]. If there is a loop nested
within another loop then the inner loop can be accessed like so:
loopIndices[1] etc.
Note: The Loop steps enables looping through arrays by providing the
start index as the from expression value and the array length as the to
expression value (length can be accessed using the length function
arrayProperty|length. See more about functions in Expressions.

Exit Terminates the markdown generation at the current point.

Set Context
Property

Sets a context property to the expression value.
Requires a path and expression value.
The path can use dot notation to set a child property as is required.
Note: Properties set in If, Else If, Else or Loop blocks are not scoped to
those blocks and are available after the block exits.

Markdown Syntax

Type Markdown

Headings # Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6

Strong/Bold **strong**

Emphasis/Italics *emphasis*

Superscript ^superscript^

Subscript ~subscript~

Underline +under line+

Strikethrough -strike through-

Blockquote > I am a block
> **I am a bold block**

Horizontal Rule ---

Hyperlink [Link Text](URL)
[**Strong Link**](URL) – can use limited markdown in link text

Image

Ordered lists 1. First item
2. Second item
3. Third item

1. Indented item
2. Indented item

1. Indented Item
2. Indented Item

3. Indented item
4. Fourth item

Unordered lists * First item
* Second item
* Third item

* Indented item
* Indented item

* Indented item
* Indented item

* Indented item
* Fourth item

Note: unordered lists can start with -, * or +

Note: to start an unordered list with a number
– 1\. First Item

Inline code … `inline code` …

Code block ```javascript
console.log('Hello world!');
```

Url <https://www.jetpacksoftware.com>

Email Address <support@jetpacksoftware.com>

Extended Markdown Syntax
Extended markdown syntax enables the creation of content such as coloured text, dates,
status’, mentions and panels.

Type Markdown

Coloured
text

{c:HEX_COLOUR:TEXT}

Example: {c:#ff0000:some text}

Note: You can surround with other markdown:
***-+{c:#ff0000:coloured text}-+***

Date {d:DATE}

Example: {d:2022-01-01}

Note: Will attempt to convert any date or time stamp.



Status {s:TYPE:TEXT}

Example: {s:blue:Status text}

Types: purple, blue, red, yellow, green and gray (defaults to gray when an
invalid type is passed)

Mention {m:USER_NAME or ACCOUNT_ID} – {m:Adam Hills}

Panel {p:TYPE}CONTENT{p}

Example:
{p:info}I am an info panel!Regular, **Strong**, *Italic*, ***Strong Italic***,
+-other marks+-{p}

Types: info, note, success, warning and error.

Expression Autocomplete
The editor expression autocomplete will provide hints based on the defined input, template
issue fields and selected variables along with other system properties.
The autocomplete will update to reflect any ‘Set Context Property’ blocks that have been
added.
Within a condition path, if a context property is set then the system will attempt to infer the
structure of the value assigned to the path and will provide autocomplete support
accordingly.
The autocomplete will always use the most recent value set, unless that value is undefined
or null and set in a condition in which case it will take the last defined value.

Expression Context
The expression context tab provides visibility of the expression context and also enables
modifications to the context in order to test the template with different values.
Note: Saving is disabled when the expression context has been modified. To enable saving
again, the expression context must be reset.
To make changes to the expression context, update the context JSON using the text input
(1). The value entered must be valid JSON and an error will be displayed if it is invalid.
After making changes to the JSON, click the ‘Update’ button (2).
To reset the expression context, click on the ‘Reset’ button.
Any changes to the variable collection, user input or template issue fields, will reset the
context.



Execution Steps
The execution steps tab provides a breakdown of the steps taken to generate the markdown
based on the blocks added to the canvas.



This can be useful to analyse the steps taken to generate the Markdown.
Note: Markdown blocks containing expressions are split into Markdown and expression
steps to provide better visibility of the expressions within the markdown.
The following blocks: Expression, If, Else If, Loop and Set Context Property all provide
additional information available by clicking on the step name.



Snapshots
Each time a template is saved, a snapshot of that template is also saved enabling a user to
go back and view the last 10 saves that have been made.
The Snapshot selection dropdown is found at the top of the template editor screen, next to
the menu buttons.



To load a snapshot, select one from the drop down and it will automatically load.
Note: If there are unsaved changes to the current template a notification is provided.
After loading a snapshot a user can make any changes required and then save. Saving a
snapshot will overwrite the latest template save (a notification is displayed).
After the snapshots have initially loaded, to reload any new saved snapshots, click the
refresh button (2).
To reset back to the most recent save, click the reset button (3).

Template Debug
The template debug feature enables users to generate debug data to provide Power
Markdown support for debugging purposes on a specific template.
It also provides the ability to debug problems which occur when your own users are
attempting to use the templates that have been created.
If a template fails to render (this could be caused by a deleted variable or template issue
field), the user will be presented with an error screen which includes encoded template
debug data for them to send to the template administrator for review.
To access the template debug feature:

1. Navigate to the template screen (in either create or edit mode).
2. Ensure the screen has focus by clicking anywhere in the template screen.
3. Press Ctrl + D to display the ‘Debug data’ (1) button.
4. Click on the ‘Debug data’ button which will open a modal window.
5. If you are providing data to Jetpack software support

1. Copy the debug data (2) to send over.
2. Click the ‘Close’ button.

6. If you are debugging an issue with one of your templates:
1. Delete the existing debug data and paste in the data provided by one of your

users (2).
2. Click the ‘Load’ (3) button.
3. This will load the template and expression context, enabling review of the

template and any errors that are preventing the template from loading.



4. Once in debug mode, the template is read only and cannot be changed or
saved. The page will need to be refreshed to make any changes to that
template again.

Expressions
Power Markdown enables the input of user defined expressions to generate dynamic
markdown and build conditional logic to control the visibility of templates and other items
such as templates and user input pages.

Expression Context
Expressions make use of a data structure ‘the expression context’.
The Expression context is an object constructed from user defined variables (see Variable
Administration), issue data (see Template Issue Field Administration), user input data (see
User Input), and other system defined properties.
Note: User defined variables are located in the root of the expression context for quick
access.

System Properties

Name Description

loopIndi
ces

Provides the current loop iteration index when using ‘Loop’ blocks. See ‘Loop’
block.

input Provides access to input properties, defined using the template input section.
See User Input.

issue Provides access to issue data. The fields available are configured by the
template administrator. See Template Issue Fields.



target Indicates the current template execution target. Possible values:

‘editor’ – when executing within the template editor.
‘dynamic-markdown’ – when applying a template as dynamic markdown.
‘field’ – when applying a template to a field.
‘comment’ – when creating a comment.

Note: This enables you to define conditions which check the target and provide
variations in the Markdown or user input based on the active target.

Common Expression Tasks

Task Detail

Invoking a
function

There are two types of functions which can be invoked in expressions,
functions associated with properties and global functions.

Global functions can be invoked by calling the function by name.
Example:

now()

Property functions can be invoked by using the ‘pipe’ character after the
property name.

Example:

stringProperty|toUpperCase()

See Functions.

Guarding for
undefined
context
properties

When you wish to check if a context property exists, use the isDefined
global function.

Converting an
array of
objects to a
table

Use the toTable array function to convert an array of objects into a table
structure, where each object in the array is displayed as a row in the
table.

This function also enables custom headers for cell headers and custom
cell template expressions where you can specify an expression for the
cell providing access to the cell's object properties.



Mapping
properties
from an array
of objects

When you have an array of objects and you wish to retrieve a map of
specific property values from those objects you can use the mapProperty
array function.

This is useful when generating select list options for user input and you
only wish to retrieve one value from an array of objects.

Working with
dates

Date variables and user input dates are stored as timestamps.

To format a timestamp as a date string, use the formatDate number
function.

To format a date string use the formatDate string function.

To format the current date use the formatDate global function.

To retrieve the current date as a timestamp use the now global function.

Filtering
object arrays

Object arrays can be filtered to find specific items. See Arrays for more
information on filtering arrays of objects.

Array iteration To iterate items in an array you can use the loop block (See Block Types).

Within the loop block the loopIndices context property will contain the
loop index at the current nesting level. If there is just one loop then the
index will be accessed like so: loopIndices[0]. If there is a loop nested
within another loop then the inner loop can be accessed like so:
loopIndices[1] etc.

Note: The loop step enables array iteration by providing the start index as
the from expression value and the array length as the to expression value
(length can be accessed using the length function arrayProperty|length().

Within the body of the loop you can access the current array item like so:
arrayProperty[loopIndices[n]] where n is the current loop nesting level.

Example:



Set context
property
scope

Properties set in If, Else If, Else or Loop blocks are not scoped to those
blocks and are available after the block exits.

Conditionally
setting a
context
property

When conditionally setting a context property where the result of the
expression is undefined within the editor, the editor is unable to
determine the correct value or type.

Accessing the value and any properties on it (if it is an object) will display
validation errors within the editor canvas.

To resolve this, use a condition block which checks to see if the target is
the editor (target == 'editor') and set the context property within this
condition block to the required value.

Example:

Operators

Type Operation Symbol

Unary



Negate !

Binary

Add/Concat +

Subtract –

Multiply *

Divide /

Divide and floor //

Modulus %

Power of ^

Logical AND &&

Logical OR ||

Comparison

Equal ==

Not equal !=

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Element in array or string in

Note about in
The in operator can be used to check for a substring: “Cad” in “Ron Cadillac”, and it can be
used to check for an array element: “coarse” in [‘fine’, ‘medium’, ‘coarse’]. However, the ==
operator is used behind-the-scenes to search arrays, so it should not be used with arrays of
objects. The following expression returns false: {a: ‘b’} in [{a: ‘b’}].



Ternary operator
Conditional expressions check to see if the first segment evaluates to a truthy value. If so,
the consequent segment is evaluated. Otherwise, the alternative is. If the consequent
section is missing, the test result itself will be used instead.

Expression Result

"" ? "Full" : "Empty" Empty

"foo" in "foobar" ? "Yes" : "No" Yes

{agent: "Archer"}.agent ?: "Kane" Archer

Native Types

Type Examples

Booleans true, false

Strings "Hello world", 'Hello world'

Numerics 6, -7.2, 5, -3.14159

Objects {hello: "world!"}

Arrays ['hello', 'world!']

Groups
Parentheses work how you would expect them to:

Expression Result

(83 + 1) / 2 42

1 < 3 && (4 > 2 || 2 > 4) true

Identifiers
Access variables in the context object by typing their name. Objects can be traversed with
dot notation, or by using brackets to traverse to a dynamic property name.
Example context:
{
name: {
first: "Malory",
last: "Archer"

},
exes: [



"Nikolai Jakov",
"Len Trexler",
"Burt Reynolds"

],
lastEx: 2

}

Expression Result

name.first Malory

name['la' + 'st'] Archer

exes[2] Burt Reynolds

exes[lastEx - 1] Len Trexler

Arrays
Arrays of objects can be filtered by including a filter expression in brackets. Properties of
each collection can be referenced by prefixing them with a leading dot. The result will be an
array of the objects for which the filter expression resulted in a truthy value.
Example context:
{

employees: [
{first: 'Sterling', last: 'Archer', age: 36},
{first: 'Malory', last: 'Archer', age: 75},
{first: 'Lana', last: 'Kane', age: 33},
{first: 'Cyril', last: 'Figgis', age: 45},
{first: 'Cheryl', last: 'Tunt', age: 28}

],
retireAge: 62

}

Expression Result

employees[.first == 'Sterling'] [{first: ‘Sterling’, last: ‘Archer’, age: 36}]

employees[.last == 'Tu' + 'nt'].first Cheryl

employees[.age >= 30 && .age < 40] [{first: ‘Sterling’, last: ‘Archer’, age: 36},{first:
‘Lana’, last: ‘Kane’, age: 33}]

employees[.age >= 30 && .age < 40][.age
< 35]

[{first: ‘Lana’, last: ‘Kane’, age: 33}]



employees[.age >= retireAge].first Malory

Functions

String Functions

Name Description Parameters Return Value

toUpperC
ase

Returns the calling string
value converted to
uppercase.

N/A string

toLowerC
ase

Returns the calling string
value converted to
lowercase.

N/A string

toTitleCas
e

Returns the calling string
value converted to title case.

N/A string

trimStart Removes whitespace or
specified characters from
the beginning of the calling
string (if no chars passed
then defaults to whitespace)

chars: string (string of
characters to remove from
the beginning of the calling
string)

string

trimEnd Removes whitespace or
specified characters from
the end of the calling string
(if no chars passed then
defaults to whitespace)

chars: string (string of
characters to remove from
the end of the calling string)

string

trim Removes whitespace or
specified characters from
the beginning and end of the
calling string (if no chars
passed then defaults to
whitespace)

chars: string (string of
characters to remove from
the beginning and end of the
calling string)

string

startsWit
h

Determines whether a string
begins with the characters
of a specified string,
returning true or false as
appropriate.

searchString: string (string to
find at the beginning of the
calling string)

start: number (The position
in the calling string at which
to begin searching for
searchString. Defaults to 0)

boolean



endsWith Determines whether a string
ends with the characters of
a specified string, returning
true or false as appropriate.

searchString: string (string to
find at the end of the calling
string)

length: number (If provided,
it is used as the length of the
calling string. Defaults to the
length of the calling string)

boolean

isMatch Executes a search for a
match between a regular
expression and the calling
string.

pattern: string (regular
expression),flags: string
(  string that contains the
flags to add)

boolean

match Executes a search for a
match in a calling string.

pattern: string (regular
expression),flags: string
(  string that contains the
flags to add)

string |
undefined

split divides the calling string into
an ordered list of substrings.

separator: string (pattern
describing where each split
should occur. The separator
can be a simple string or it
can be a regular expression)

array<string>

indexOf Returns the index within the
calling string of the first
occurrence of the specified
value.

searchString: string (The
string value to search for)

position: number (An integer
representing the index at
which to start the search)

number
(returns -1 if
the value is
not found)

lastIndex
Of

Returns the index within the
calling string of the last
occurrence of the specified
value.

searchString: string (The
string value to search for)

position: number (The index
of the last character in the
string to be considered as
the beginning of a match)

number
(returns -1 if
the value is
not found)



includes Performs a case-sensitive
search on the calling string
to determine whether one
string may be found within
another string.

value: string (A string to be
searched for within the
calling string)

position: number (The
position within the calling
string at which to begin
searching for the value.
(Defaults to 0)

boolean

replace Replaces all instances of the
search value with the
replace value.

searchValue: string (A string
to be searched for within the
calling string)

replaceValue: string (A string
to replace the search value
with)

string

repeat Constructs and returns a
new string which contains
the specified number of
copies of calling string,
concatenated together.

count: number (An integer
indicating the number of
times to repeat the string)

string

substring Returns the part of the
calling string between the
start and end indexes, or to
the end of the string.

start: number (The index of
the first character to include
in the returned substring)

end: number (optional) (The
index of the last character to
exclude from the returned
substring)

string

escape Escapes all markdown
special characters in the
calling string.

N/A string

parseDate Attempts to parse the calling
string as a timestamp
(returns 0 if unable to)
(which can then be
formatted by calling
formatDate number function
– see below).

format: string (the format to
try to parse the date using –
see Format Specifiers)

number



formatDat
e

Attempts to parse the calling
string as a date (expects ISO
8601 string) (returns the
same value if unable to).
Returns the formatted date
according to the string
pattern passed in.To escape
characters, wrap them in
square brackets (e.g. [MM]).

pattern: string (see Format
Specifiers)

string

length Returns the length of the
calling string.

N/A number

Array Functions

Name Description Parameters Return
Value

toTable Converts the calling
array into a table
structure.

headers: array<string> (optional) (the
column headers to display)

templates: array<string> (optional)
(expression template strings to use for
formatting each cell. Can be used to
reference other item properties but not
data in the context. Example: ‘firstName + ‘
‘ + lastName|toUpperCase()’).

string

mapProp
erty

Converts an array of
objects to an array
of string values by
retrieving a specific
property value from
each object.

property: string (the property to retrieve
from each object in the array)

array<an
y>

length Returns the length
of the calling array.

N/A number

includes Returns true if the
value passed is
found in the calling
array.

value: any (A value to be searched for
within the calling array)

position: number (The position within the
calling string at which to begin searching
for the value. (Defaults to 0)

boolean



Object Functions

Name Description Paramet
ers

Return
Value

length Returns the length of the keys in the calling
object.

N/A number

toJSON Converts the calling object to formatted JSON
with 2 space indentation.

N/A string

getPropertyNa
mes

Returns a string array containing all object
property names.

N/A array<stri
ng>

Date Functions

Name Description Parameters Return
Value

formatD
ate

Attempts to convert the timestamp as a date
(returns the same value if unable to).
Returns the formatted date according to the
string pattern passed in.To escape characters,
wrap them in square brackets (e.g. [MM]).

pattern: string
(see Format
Specifiers)

string |
undefine
d

Global Functions

Name Description Parameters Return
Value

formatD
ate

Returns the current date on the user’s machine
according to the string pattern passed in.To
escape characters, wrap them in square brackets
(e.g. [MM]).

pattern: string
(see Format
Specifiers)

string

now Returns the current timestamp on the user’s
machine.

N/A numbe
r

isDefine
d

Checks to see if a context property is defined. path: string (the
path to check)

boolea
n

Date Format Specifiers

Format Output Description



YY 18 Two-digit year

YYYY 2018 Four-digit year

M 1-12 The month, beginning at 1

MM 01-12 The month, 2-digits

MMM Jan-Dec The abbreviated month name

MMMM January-December The full month name

D 1-31 The day of the month

DD 01-31 The day of the month, 2-digits

d 0-6 The day of the week, with Sunday as 0

dd Su-Sa The min name of the day of the week

ddd Sun-Sat The short name of the day of the week

dddd Sunday-Saturday The name of the day of the week

H 0-23 The hour

HH 00-23 The hour, 2-digits

h 1-12 The hour, 12-hour clock

hh 01-12 The hour, 12-hour clock, 2-digits

m 0-59 The minute

mm 00-59 The minute, 2-digits

s 0-59 The second

ss 00-59 The second, 2-digits

SSS 000-999 The millisecond, 3-digits

Z +05:00 The offset from UTC, ±HH:mm

ZZ +0500 The offset from UTC, ±HHmm

A AM PM



a am pm

Expression Limitations
All expressions (except for expression blocks in Markdown) can be a maximum length of
1000 characters.

Template Limitations
Template names can be no longer than 100 characters.
Template descriptions can be no longer than 200 characters.
The max iteration count for template loops is 1000.
The ‘Set Context Property’ block property path can be no longer than 200 characters
Expressions can be no longer than 1000 characters.
The total length of Markdown used in the template can be no longer than 100,000
characters.

User Input Limitations
Descriptions can be no longer than 200 characters.
Page titles can be no longer than 200 characters.
Field labels can be no longer than 200 characters.
Field help text can be no longer than 500 characters.
Field context properties can be no longer than 50 characters.
Text field default values can be no longer than 1000 characters.
Text field regular expressions can be no longer than 1000 characters.
Select field default values can be no longer than 1000 characters.
Select field options can be no longer than 2000 characters.



Template Issue Field Administration
Template issue fields define the Jira Issue fields which are available to the expression
context (see Expressions).

Managing Template Issue Fields
Template issue fields define the Jira Issue fields which are available to the expression
context (see Expressions).
To manage template issue fields, click on the ‘Template issue fields’ link on the Power
Markdown main menu.
Note: Template issue field administration is only available to template administrators.
Note: Template issue field administration is available via the Power Markdown main menu
and in the template screen (for quick access to add template issue fields when building
templates).

1. Create template issue field – click to open the template issue field modal window
enabling creation of a template issue field.

2. Back to menu – click to go back to the main menu.
3. Field name link – click to open the template issue field modal window enabling

editing of a template issue field.
4. Delete template issue field – deletes the template issue field after user confirmation.
5. Page template issue fields – click on the page number to navigate to the chosen

page.

Creating and Updating Template Issue Fields
The process for creating and updating template issue fields are similar and explained below:
Click on the create template issue field button (1) or on the name of the template issue field
you wish to edit (2).
Select an issue field from the drop down.



Default Value
A default value is required and is used when the user does not have permission to access
the field, where the Jira Project does not display the field, where the value has not been set
and in the editor context when designing the template.
The default value input will change depending on the type of the field selected. For example
an array type will display a multiline input where each line is an array item.
Most field types support blank string defaults except date, date time and number fields.
Date and date time field types require a date to be entered as a default. This date is
converted to a timestamp and formatting functions can be used to convert into date strings
within the templates (see Expressions).
Enter a context property name for the field (the value for this field will be available in the
expression context under the issue root property. for example: issue.issueType) The app will
auto generate a name based on the field name but this can be changed.

Click ‘Create’ or ‘Update’.



Template Issue Field Limitations
Context properties can be no longer than 50 characters.
Default values can be no longer than 1000 characters.
The maximum number of template issue fields is 500.



Variables Administration

Overview
Variables are named and typed pieces of data which are used in templates.
A variable can be created and managed using either the Jira interface or via a secured API
endpoint.

Managing Variables
To manage variables, click on the ‘Manage Variables’ link on the Power Markdown main
menu.

1. Create variable – click to navigate to the variable screen to create a variable.
2. Back to menu – click to go back to the main menu.
3. Filter field selection – choose the field you wish to filter on.
4. Filter field value – enter a value to automatically filter the grid based on the selected

filter field.
5. Sort grid – click on the name, description, type or created on column headers to sort

the rows.
6. Edit variable – click on the variable name to navigate to the variable edit screen.
7. Copy variable – prompts for a variable name and copies the chosen variable. Note: if

the variable name is already taken a validation message will be displayed.
8. Delete variable – deletes the variables after user confirmation.
9. Page variables – click on the page number to navigate to the chosen page.

Variable Data Types
A variable’s data type determines the values that the variable can contain.
Data types are used to enforce valid data is submitted both in the UI and via the API.



The ‘Object’ type is flexible and accepts any valid JSON data.
Below is a table listing the available data types and supported values:

Data
Type

Description

String Stores a string value.

Number Stores any numeric value (6, -7.2, 5, -3.14159).

Boolean Stores boolean values: true or false.

Date Stored as timestamps.

Accepts dates in string or timestamp format and attempts to convert string
dates to timestamps.

Object Accepts any valid JSON string.

Creating and Editing Variables
Navigate to the variable screen by clicking on the ‘Manage Variables’ link on the Power
Markdown main menu and then the ‘Create variable’ button above the variables grid (to
create) or on an existing variables name (to edit).
To create a variable:

1. Enter a name for the variable (this must not match an existing variable or system
context property name and a validation message will be displayed on save if it does).

2. Enter a description (optional)
3. Choose a data type for the variable (see Variable Data Types).
4. Select or enter a value for the variable.
5. Click ‘Save’ or ‘Save and close’.

Editing a variable is similar to creating a variable however once a variable has been created
the variable data type cannot be changed.



To edit a variable:
1. Modify the variables name, description and/or value.
2. Click ‘Save’ or ‘Save and close’.

Managing Variables via the API
The variables API enables programmatic access to create, update, delete and retrieve
variables.

Authentication
The variables API uses an API key for authentication.
The API key is available by clicking on the ‘Variables API’ link in the Power Markdown admin
menu (see API Settings).
The API key should be passed in the ‘api-key’ header.

Status Codes
The following table lists the possible status codes returned from the API.

Status Code Description

200 (Ok) Success response

404 (Not Found) Error response indicating that the requested resource could not
be found.

500 (Internal Server
Error)

A server side error occurred.

400 (Bad Request) The request is incorrect or corrupt.

401 (Unauthorised) The API key provided is invalid.

Error Responses
Where the status code does not indicate success an error response body is returned
containing an error code and an optional message.
{

errorCode: 100,
message: ‘Error message’

}

Error Code Description

100 (Invalid HTTP Method) The HTTP method is not supported.



101 (API Key Not Found) The API key has not been provided in the headers.

102 (Invalid API Key) The provided API key does not match the active API
key.

103 (Name Not Found) The name query string parameter has not been
provided.

104 (Variable Not Found) The variable requested cannot be found.

105 (Max Variable Count
Reached)

The maximum count of variables has been reached.

106 (Invalid Body) The body passed in the request is not in the expected
format.

107 (Variable Value Exceeds
Max Size)

The variable value provided is larger than the
maximum allowed.

108 (Variable Already Exists) The variable already exists and cannot be created.

Create Variable

Method POST

Body {
“name”: string,
“description”: string,
“type”: “string” | “number” | “date” | “boolean” | “object”,
“value”: any

}

Example body {
“name”: “variable1”,
“description”: ”Variable 1 description”,
“type”: “string”,
“value”: “value”

}

Success status code OK (200)



Possible error responses Bad request (400) – Invalid body (106)
Bad request (400) – Variable value too large (107)
Bad request (400) – Max variable count reached (105)
Bad request (400) – Variable already exists (108)

Update Variable

Method PATCH

Notes The body must include the name and then can include either the
description, value or both.

Body {
“name”: string (required),
“description”: string (optional),
“value”: any (optional)

}

Example body {
“name”: “variable1”,
“value”: “value”

}

Success status
code

OK (200)

Possible error
responses

Bad request (400) – Invalid body (106)
Bad request (400) – Variable value too large (107)
Not found (404) – Variable not found (104)

Delete Variable

Method DELETE

Query string ?name=VARIABLE_NAME

Success status code OK (200)



Possible error responses Bad request (400) – Name not found (103)
Not found (404) – Variable not found (104)

Get Variable

Method GET

Query string ?name=VARIABLE_NAME

Success status code OK (200)

Possible error responses Bad request (400) – Name not found (103)
Not found (404) – Variable not found (104)

Response body {
“name”: “variableName”,
“description”: “Variable description”,
“type”: “string”,
“value”: “…”

}

Get All Variables

Method GET

Response body [{
“name”: “variableName”,
“description”: “Variable description”,
“type”: “string”

}]

Success status code OK (200)

Variable Limitations
Variable names can be a maximum length of 50 characters.
Variable descriptions can be a maximum length of 100 characters.
Variables can be a maximum size of 500kb.



No more than 200 variables can be created.



Using Markdown Templates
There are two ways to use a markdown template:

1. Apply a template to an issue. This enables the end user to choose a template and an
issue and either update an existing field (which supports wiki markup) or create an
issue comment. The field is then updated or the comment is created and does not
change over time (the generated content is static).

2. Dynamic markdown. Display content generated in real time in the issue (either in a
panel in the main issue screen (below the description) or in an activity tab (along with
comments, history etc.)).

The following sections describe using these methods in more detail.

Applying to an Issue
To apply a Markdown template to an issue in order to create a comment or update the
description (or other field which supports wiki markup) follow the steps below.
Note: It is possible to apply a template from the Power Markdown main menu and also from
the issue screen via the issue actions menu (‘…’ menu in the top right). Both options use the
same process with the omission of the issue selection when applying from the issue screen.
Both approaches are described below.
A: When applying a Markdown template from the Power Markdown main menu:
Navigate to the Power Markdown main menu and click ‘Apply Template’.

Select or search for an issue to apply the template to and click next.



B: When applying a Markdown template from the issue screen:
Navigate to the issue you wish to apply a template to and from the issue actions menu in the
top right corner ‘…’ select ‘Apply Markdown Template’.



From this point forward all steps apply to both A and B above.
Select a template to use and click next. The templates visible will depend on:

1. The users roles and the roles associated with templates.
2. The template display condition (if set).

Click next.



Select the template target:
1. If the template supports field selection only then you will be prompted to select a

field.
2. If the template supports field selection and the creation of comments, then you will

be prompted to select a field or whether to create a new comment.
3. If the template only supports comment creation then selection will be skipped and

you will be directed to either the preview or user input (if required).
Click next.



If the template has any user input defined, the user input pages will be displayed.
Navigate through the user input pages until the end and click next.



Depending on the template preview settings you will then either be displayed with a read-only
preview or will be able to edit the generated content.
Click apply.



Preview with edit



Preview – Read only
Then either click the ‘Go to issue’ or ‘Refresh issue’ button (depending on whether the
Markdown template is being applied from the main menu or within an issue) to navigate to
the chosen issue or the ‘Apply another’ button, to apply another template.



Dynamic Issue Markdown
Dynamic Markdown enables content to be generated in real time in the issue screen (either
in a panel in the main screen (below the description) or in an activity tab (alongside
comments and history)).
Both sections are identical in function and allow viewing the same content but each can
have its own selection. The panel in the main screen can provide greater visibility whereas
the activity tab has more space.
Creating and updating Dynamic Markdown follows a similar process. The only difference is
that once a visibility is selected it cannot be modified.
Choose whether to display the Dynamic Markdown in the issue panel or activity tab.

1. If the issue panel is not already open, click on the Power Markdown icon in the issue
menu.

2. For the activity tab, click on the Power Markdown tab in the activity tabs.



Dynamic Markdown in issue panel

Dynamic Markdown in activity panel
If no Dynamic Markdown is available then a message informs you of this.



Click on the create (plus icon) (1) or edit (pencil icon) (2) (when Dynamic Markdown has
been selected) which will open the Dynamic Markdown modal window.

Select a template. The templates visible will depend on:
1. The users roles and the roles associated with templates.
2. The display condition (if set).

Enter a title (this is displayed above the generated content).

Select a target:
1. All issues – this will display the Dynamic Markdown for all issues in Jira.
2. Current issue – this will display the Dynamic Markdown only for the current issue.



3. Conditional – this will display the Dynamic Markdown based on the result of the
condition expression. The condition expression has access to the template issue
fields in the expression context and displays the Dynamic Markdown if the condition
evaluates to a truthy value (false, undefined or null equate to false all other values
equate to true).

Select the visibility (only available on creation of the Dynamic Markdown and only for
template administrators. For other users only private is permitted and the option is not
displayed):

1. Public will display the Dynamic Markdown for all users.
2. Private will only display the Dynamic Markdown for just the user creating it.



If the selected template requires input data then a ‘Next’ button will appear instead of
‘Create’ and you are prompted to enter input data until a complete page is displayed at which
point the ‘Create’ button is displayed.
Click ‘Create’ or ‘Update’.
Note: The Dynamic Markdown is displayed in the select list in alphabetical order.

Deleting Dynamic Markdown
1. Select the Dynamic Markdown you wish to delete.
2. Click the trash icon.
3. Confirm the request to delete.
4. The markdown will now be deleted.

Setting Default Dynamic Markdown
You can choose Dynamic Markdown to set as default for all issues which meet the target
criteria.
To do this click the ‘Set as default’ button (which will display a green tick when the default is
set).
To remove the default click the button again and the green tick will be removed.



Default not selected

Default selected

Overriding Dynamic Markdown Target Settings
It is possible to view all Dynamic Markdown regardless of target settings.
To do so click on the ‘Display all’ toggle button.
When the ‘Display all’ is toggled on, all Dynamic Markdown will be displayed in the select list
regardless of target settings. This enables modification of the Dynamic Markdown.

Dynamic Markdown Limitations
The dynamic Markdown title can be a maximum length of 200 characters.
For templates which have user input, the maximum length of a text field is 5000 characters.



Administration

User Roles
The user roles screen enables the creation of custom roles and provides the ability to assign
roles to Jira users.
Roles have two purposes:

1. They control which users can administer markdown templates and variables.
2. They can control which markdown templates users can see and use (when creating

templates, the template administrator can choose which roles to make that template
visible to, thereby restricting access to templates based on roles).

Assigning a Default Role
It is possible to assign a default role for all non administrative users. By default that role is
the ‘User’ role (which does not have rights to manage templates or variables).

Assigning Roles to a User
If it is preferred to assign roles to specific users you can do so in the role assignment tab.

1. Click ‘Assign roles to user’.
2. Choose the user you wish to assign roles to.
3. Choose one or more roles you wish to assign to the user.
4. Click ‘Create’.



Changing a Users Roles
In the role assignment tab, it is possible to update a user’s roles by adding or removing roles
using the roles drop down.

Deleting User Roles
In the role assignment tab, it is possible to remove assigned roles for a user by clicking on
the ‘…’ button in the grid and selecting ‘Delete‘. After confirming you wish to delete, the
assigned roles will be removed. This user will then fallback to using the default role.



Creating a Custom Role
In the custom roles tab it is possible to create custom roles to be used to:

1. Control which users can administer templates or variables.
2. Assign to users to create groups of users which can use specific templates.

To create a custom role:
1. Click ‘Create custom role’.
2. Enter a name for the role.
3. Choose whether the role supports template or variable administration.
4. Click ‘Save’.

Updating a Custom Role
A custom role can be updated by following the steps below:

1. Click on the name of the role.
2. Make updates to the roles name and/or template/variable administration status.
3. Click ‘Update’.

Alternatively you can change the custom roles variable and template administration status
by toggling the switches in the grid.

Custom Role Limitations
Custom role names can be a maximum length of 100 characters.

Variables API
The variables API enables programmatic access to create, update, delete and list variables.
The admin section provides the URL endpoint required for access and control over the API
key used to secure the endpoint.



API Settings
To use the variables API it is necessary to use the API endpoint and the API key.
For more information about using the variables API see Managing Variables via the API
The API endpoint (1) and key (2) are made available via the ‘Variables API’ link in the admin
menu (see Admin Menu).

Regenerating the API Key
If it is necessary to change your API key it is possible to regenerate it by following the steps
below:

1. Click on the ‘Regenerate API key’ button.
2. Review the warning message (which is letting you know that any requests to the

endpoint using the old API key will fail).
3. Confirm the warning.


